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The local concentration in binary solutions of polymer in solvent and in simple liquid solution has been 
determined by an equation derived from the maximum condition of the number of configurations in the 
binary solution with two hypothetical regions, a small region and the rest. The equation for a solution of 
flexible polymer with r segments in solvent is given by: 

ln(~b 2X2/X2~)2) -[- {k - (1 - k)/r} ln(~b2/X2) + k(1 - r -  x)(~b 2 - X2) -[- k ln(N*/n*) = 0 

where X i is the local volume fraction of polymer (i = 2) and solvent (i = 1), ~b i is the mean or macroscopic 
volume fraction, k is a parameter defined by k= _ {1 +(V°/V°)(dn2/~nl)v} and V ° is the molar volume of 
i and ni is the number of molecules of i in the small region, nt*=n 1 +rn 2, and N* is the total number of 
molecules in the solution. It is found that the maximum concentration fluctuation in the small region 
around the mean concentration ~b 1 characterized by IX 1 -~bl[ is proportional to [k[ and is zero for k=0. 

(Keywords: combinatorial entropy; ideal liquid solution; local concentration) 

I N T R O D U C T I O N  

Investigations on a local or microscopic concentration 
in polymer solution and its relation to the mean or 
macroscopic concentration and of a local concentration 
fluctuation are very important  in understanding the 
thermodynamic properties of polymer solution. Wilson 1 
proposed a concept of local concentration, such as a local 
volume fraction, which depends on an interaction energy 
between solvent and solute and is not equal to the 
macroscopic volume fraction generally. The concept of 
local concentration or non-randomness in solution has 
been applied to polymer solutions and discussed by 
Abrams and Prausnitz 2, Renuncio and Prausnitz 3, 
Brandani 4 and Rubio and Renuncio 5. A correlation 
between the interacting surface fraction and volume 
fraction has been discussed by Koningsveld and Kleintjens 6 
in evaluating the pair-interaction parameter corresponding 
to the Z parameter  in the Flory-Huggins  theory 6. On the 
other hand, there have been theoretical approaches to 
the local concentration or non-random mixing. Fixman 7 
has derived the thermodynamic theory of polymer 
solution which covers the entire concentration range from 
dilute to concentrated solution and shows that at low 
concentration the result is identical to that in imperfect 
gas theory and the random mixing model is found to 
hold at high concentration. The theory of composition 
fluctuation in solution has been derived by Kirkwood 
and Buff 8 based on the statistical mechanics theory. The 
Kirkwood-Buff  theory has been applied to polymer 
solution and a reasonable prediction is obtained over 
non-critical and critical regions 9'1°. 

The random mixing model is unquestionably the 

simplest approximation for the concentration or solution 
structure in solution and the model shows that the local 
concentration is equal to that determined macroscopically 
and therefore the solution is completely uniform in the 
range 1 0 - a ° - 1 0 - 6 m  3, for example. It  is logically 
questionable to assume a positive (or negative) deviation 
from the mean concentration at all small regions in the 
entire solution because that breaks the mass conservation 
rule. Therefore a positive deviation from the mean 
concentration must be compensated for by a negative 
deviation in another region to balance the numbers of 
each component. In other words, the random mixing 
model gives quite a reasonable statistical average over 
the entire solution although a deviation of concentration 
from the random mixing or fluctuation of concentration 
is an essential feature in the microscopic range. 

In this work an equation is derived to determine the 
local concentration in solution from the maximum 
condition of the number of configurations in solution 
where the solution is separated into two hypothetical 
regions, a small region and the rest. The physical meaning 
of deviation of local concentration from the random 
mixing model and of the random mixing model itself is 
discussed based on results obtained from the calculations. 

BASIC E Q U A T I O N  FOR LOCAL 
C O N C E N T R A T I O N  IN BINARY S O L U T I O N  

It is instructive to derive an equation to determine a local 
concentration in a simple liquid solution consisting of 
N x molecules of component  1 and N 2 molecules of 
component  2 where both molar volumes are equal, i.e. 
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V ° = V2 °. The solution is separated hypothetically into 
two regions, one is a small region with volume v 
containing n~ molecules of 1 and n 2 of 2 and the other 
is the rest containing ( N l - n l )  of 1 and (N2-n2)  of 2. 
The number of configurations for the separated solution 
w(nl, n2) is given by: 

w(nl, n2)= [ { U l ! / ( U l - n O ! n ~ ! } { N 2 ! / ( N 2  - n2)!n2!}] 

x [(nl + n2)!/nl!n2!] 

x [(N x + N 2 - n x - n2)!/(N 1 - n0!(N 2 - n2)! ] 

(1) 
where the first square brackets indicate the number of 
ways to pick up or separate nl molecules of 1 from N1 
and n2 molecules of 2 from N2, the second square brackets 
give the number of configurations in the small region 
consisting ofnx of 1 and n2 of 2, the last show the number 
of configurations in the rest of the solution containing 
(Nl- -n l )  of 1 and (N2-n2)  of 2. The total number of 
configurations Wtot, ~ in the solution with no condition is 

Wtotal ~-- {(NI + N2) ! /NI !N2  !} (2) 

The probability P(nl ,  n2) that the solution has a small 
region containing n 1 molecules of 1 and nz of 2 is 

e (n l ,  n2) = w(nl,  n2)/Wtot, 1 (3) 

The maximum condition for P(nl, n2) with respect to nl 
under a condition that n2 depends on nl in the small 
region with a constant volume v is 

{63 In P(nl ,  n2)/63nl}N~,N2, ~ = {63 In w(nl, n2)/63nl}N,,Nz,v=O 

(4) 

It can be shown from equations (1) and (4) and the 
approximations Nl>>n I and N 2 > > n  2 that 

ln(d/2x2/x2qj 2) + 2k ln(~,2/x2) + k ln(Nt/nt) = 0 (5) 

where ~9i=Ni/(N 1 ÷N2), x i = n J ( n x  ÷n2), N t = N 1  ÷ N  2, 

n t = n  I ÷ n  2 and k is defined by 

k =  _+ {1 +(V°/V°X63 n2/63nx),, } (6) 

and in the case of V ° = V  °, k=+_{l+(63n2/63nl),,}. 
Equation (5) with k = 0 is given by 

2 2 2 2 ln(~O i x 2 / x  1 ~/2) = 0 (7) 

and therefore 

X1 ~ ~//1 

which is identical to that in the random mixing model. 
Although equation (1) is based on ideal mixing, it is still 
useful for mixtures showing a cluster formation or a 
non-random mixing, which will be discussed later. 

DERIVATION OF THE EQUATION FOR 
LOCAL C ONC ENTRATION IN POLYMER 
SOLUTION 

The local concentration for a solution of polymer in 
solvent has been determined by a similar procedure to 
that in the simple liquid solution. The number of 
configurations, Wp, for a polymer solution separated 
hypothetically into two regions, one a small region 
containing n2 polymer molecules with r segments per 
molecule and nl solvent molecules and the other a large 
region containing N 2 - -  n 2 polymer molecules and N1 - nl 
solvent molecules, where N 2 >> n 2 and N 1 >> nx, is expressed 

by: 

Wp [-{(N2r)!/(n2r)!(N2r- n2r)!}{Nll/n,t(Nt- nl)!}] 
x [{(n2r + n,)!/(n2r)!nt!}{n2r/(n2r + n,)} "~¢'- 1)-x 

x {(n 2 + x)!(n 1 + n2)!/n2!(n x + n2 + x)!}] 

x [{(N* - n 1 - n2r)!/(N 1 - nx)!(rN2 - n2r)! } 

x {(N 2 - n2)r/(N 1 - n 1 + (N 2 - n2)r)} tN2-"2)('- 1)-r 

x {(N 2 - n 2 + y)!(N1 - n l + N2  - n2)!/ 

( N 2 -  n2)!(Nx - nx + N 2 -  n2 + y)!}] (8) 

where N * = N I + N 2 r  and x and y are parameters 
characterizing the flexibility of polymers in the small and 
large regions in solution, respectively, and are introduced 
in a previous work 11. The first square brackets in 
equation (8) indicate the number of ways to separate net  
segments from N 2r  total segments for polymers of N 2 
and n 1 solvents from N 1 total solvents, the second square 
brackets show the number of configurations of n 2 
polymers with the flexibility parameter x and nl solvents 
in the small region, and the third give the number of 
configurations of NE--n  2 polymers with the flexibility 
parameter y and N l - n l  solvents. The maximum 
condition of equation (8) is given by 

(63 In wp/63n 1)N,,N~,v = 

In[{¢2X2(X1 + X2/r ) (¢ l  + ¢2/r  + ~b 14~2)}/ 

{X2q52(~bl + (a2/r) x ( X  1 + X z / r  + ~X1X2)}] - {(1 - k)/r} 

x ln[{~b2(~bl + ¢2/r  + =4h ¢2)(r- 1 + c~X1)(X1 + X2/r )} /  

{X2(X1  + X 2 / r  + ctX1X2)( r-1 + ~¢1)(¢1 + ¢2/r)}3 

+ ~(1 - 2X 1 + k X  2) ln{(r -1 + ~tXl) / (X 1 + X2 / r  + ctXlX2)} 

+ ~(1 - 2q~ 2 - k~b 2) ln{(r-I + ~b 0/(¢,  + ¢21r + 0~1 ¢2)} 
+ ~(1 - k)(Xl - ~b 1) + k{(1 - r -  1)(~b 2 - X2) 

÷ ~ X 1 X  2 --  ~ b  1¢2} ÷ k ln(~b2/X2) + k ln(N*/n*)  = 0 

(9) 
where n* = nl + rn2. The parameters x and y are defined 
using a constant ~ by 

x =ctrn2X 1 (10) 
and 

y = ~xr(N2 - n2)(Nx - nO/{(N2 - n2)r + (N1 - nl)} (11) 

The parameters x and y are zero for flexible polymers 
and the values increase with an increasing rod-like 
character in polymer chains and are mentioned in more 
detail in the previous work 11. The local volume fraction 
X 2 for the polymer is defined by: 

X 2 = rn2 / (n  I + rn2)  (12) 

where X1 = 1 - X  2. The mean volume fraction t~2 for the 
polymer is defined by: 

~l)2 = r N 2 / ( N  1 + rN2) (13) 
0 0 where ¢1 = 1 - ¢ 2  and r is defined by r-- V 2 / V  v 

It is very interesting to derive an equation in the special 
case of equation (9). In the case of the solution of a flexible 
polymer, ~t = 0, equation (9) reduces to 

(63 In Wp/63nON,,N . . . . . .  0 = ln (O2X2/X2  t~2) ÷ {k- (1  - k)/r} 

x ln(q~2/X2) + k(1 - r -  1)(4 2 - X2) 

+ k ln(N*/n*)  = 0 (14) 
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and in the special case of a solution of a flexible polymer 
= 0 and k = 0, equation (9) reduces to a simpler equation: 

(O In Wp/On 1)N,,N2 . . . . .  O,k = 0 = 

ln(¢ZlX2/X 2 ¢ 2 ) - r  -1 ln(¢2/X2)=O (15) 

It is obtained from equation (15) that 

X1 =¢1  (16) 

which is equal to that in the random mixing model. It is 
noteworthy that the random mixing model or X 1 =¢1  
is held in equation (9) if k ln(N*/n*)=O or if either k=O 
or N*/n* = 1 is satisfied. It is also pointed out that 
equation (9) with a = 0 and r = 1 is equal to equation (5) 
for the simple liquid solution. 

It is important to evaluate the value ofk experimentally. 
It can be obtained from the thermodynamic equation 
that: 

(dVM)P,T=(OVM/Onl).2 dn I +(~VM/On2)mdn 2 (17) 

and equation (17) under constant volume of solution 
dVM=0 is expressed by: 

(On2/cOnl)vM= -(OV~t/OnO.ff(OVM/On2)., (18) 

In the case of an ideal solution where the excess volume 
of mixing AVE=0, equation (18) is reduced to: 

= - V f f V  2 (19) (t~n2/Onl)vM o o 

Then k in equation (6) in the small region is obtained by 
replacing V~a by v in equation (19) by 

k= +_- {(V°/V°)(Sn2/OnOv + 1} =0  (20) 

It is found from equation (20) that the random mixing 
model holds in the polymer and simple liquid solutions 
when AvE= 0. Determination of k has been carried out 
using data of specific volume of solution. The partial 
molar volume of solvent 1 is obtained by 

(OVM/C3nl ) .2=ml{vm-W2(OVm/OW2)}  (21) 

and that for solute 2 is 

(OVu/t~n2)., =M2{vmWWl(OOm/OW2) } (22) 

where Vm = V~a/(ml + m2) and m~ is the mass of component 
i, wl is the weight fraction of i. The value ofk is given by 

k = + [1 - (v°/v°){v,~ - WE(~Vm/~Wg}/{Vm + Wl(0Vm/~W2)}] 

(23) 

It is useful to rewrite equation (23) using mole fraction 
x~ for simple liquid mixtures and volume fraction in 
polymer solution, which are given by: 

k = + { 1 -- (v°/v °) + (v°/v°)[xlM1/(xlM1 + x2M2) 

+ {(O In Vm/OX2) (x iM 1 + x 2 M 2 ) 2 / M 1 M 2 }  - 1-] - 1} 

(24) 

and 

k=__+{1 o o o o o o o --  (V2/Ol) + (U2 /V l ) [ (¢ I /V l ) / (¢ I /V  1 + ¢2/V2) 

+ {(~ In v~/0¢2) x V°ll)°(¢l/l)° 1 -Jr- ¢2//)20) 2} -1-] - 1} 

(25) 

where v ° is the specific volume of i and v ° = V°/M~. 
In a previous work we obtained a semi-empirical 

equation for the specific volumes and excess volume in 
simple liquid mixtures and polymer solutions, which is 
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given by 12 

o,. o, o,r(~2) (26) l) m = Vl[U2/VlJ 

where 

Y(xz) = 2"/(2" - 1) - (2 - x2)"(2" - 1)- 1 (27) 

In the case of polymer solution the mole fraction is 
converted into the volume fraction ¢i in equation (26). 
It is interesting to derive the equation for k at a 
concentration x l = 0.5 or ¢1 =0.5 using equations (24), 
(25) and (26), that is: 

k(xl = 0.5) = _+ I1 -(v°/v°a) + (v°/v°){ {Mf f (M 1 + M2)}/2 

+ [{n(1.5)"-1/(2"- 1)}{ln(v°/v°)} 

x 0.25(M 1 + M2)Z/MIM2]-  1} - 1] 

(28) 

where it is convenient to use k+ for the positive part of 
k in equation (28) (see Figure 1) and 

k(¢1 = 0.5) = + [1 - (v° / ,  °) + (,°/Vl°){ { 1 + -1 

+ E{(1.5)"-ln/(2" - 1)}{ln(v°/v°)} 
oz o o -1 - (29) } ' ]  

RESULTS 

Values of k+ calculated using equations (28) and (29) 
based on the experimental data are listed in Table 1 and 
are plotted against o o vz/v 1 in Figure 1 where values of k÷ 
are nearly equal to zero around o o v2/v 1 = 1.0 and increase 
with increase or decrease of 0 o v2/vl and values of k in 
polymer solutions are around +0.0018. Values of local 
concentrations calculated by equation (5) for various 
values of k are shown for simple liquid solutions in 
Figure 2. At each concentration k has two values, one 
positive and the other negative, and k > 0 corresponds to 
positive fluctuation around the mean or macroscopic 
concentration expressed by x l - ~ q > 0  and k < 0  to 
negative fluctuation. Therefore the absolute value of k 
gives a measure of maximum fluctuation around the mean 
concentration. The local volume fraction X 1 for solvent 
in the flexible polymer solution is calculated by equation 
(14) and is shown in Figure 3. The molecular weight or 
r dependence and k and N*/n* dependence of the local 
concentration are shown in Figures 4, 5 and 6, where 
values of X1 increase with increase of [k[ and ln(N*/n*) 
linearly, while X 1 approaches a constant value with 
increase of In r. 

DISCUSSION 

It is found in this work that a deviation of local 
concentration from the mean or macroscopic concentration 
is attributed to a term k ln(Nt/nt) in equations (5) and (9) 
where values of k can be determined from the partial 
volumes of solute and solvent, while Nt/n t corresponds 
to the magnification of the microscope, which can be set 
arbitrarily. If we observe the solution by increasing the 
magnification of the microscope, the molecules in the 
field of vision of the microscope will move dynamically 
and continually. For  example, some molecules will move 
into the field and others out, some molecules collide with 
others and some vibrate around their positions. On the 
other hand, if we observe various regions in solution by 
keeping the magnification constant, it will be found that 
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o o Figure 1 Plot of k+ v e r s u s  v2#) 1 in the simple liquid solutions calculated using equations (28) and (29). Data are given in Table 1 and are taken 
from ref. 12 

the concentrations in the regions differ slightly from the 
mean concentration and some concentrations are higher 
than the mean one and others are lower. It is very 
important to discuss these behaviours based on the 
present work. Equation (6) can be rewritten using 

0 0 r = V2/V 1 as 

k = +_ {a(n2r + nl)/anl}~ (30) 

where (n2 r + nl) = nt* is the total number of molecules and 
segments in the small region of volume v. If there is no 
excess volume of mixing, i.e. AVE=0, then k is equal to 
zero as shown in equation (20) and because l.l t =V/~ is 
constant where ;7 is the molecular volume. In a solution 
where AV E S0,  /1 t in v is not constant as is discussed 
below. An essential difference between the solutions with 
AVE= 0 and A v E #  0 is the rigidity or compressibility of 
molecules and segments in solution. In the ideal solution 
with AV E =0,  the molecules are assumed to be perfectly 
rigid balls with zero compressibility and therefore the 
number of molecules in v does not change by the 
introduction of molecules into v, while in the solution 
where AvEr0, the molecules are compressible and 
therefore the molecules moving, vibrating and colliding 
in solution with thermal energy can produce free spaces 
through their dynamic motions and consequently number 
fluctuation and concentration fluctuation occur in 
solution where the mean number of molecules in v is 
given by 

r /  . . . .  =(Nt/Vt)v (31) 

where V t is the total volume of solution. 

It is interesting to discuss the physical meaning of 
positive and negative values of k in equation (30). The 
positive value of (Ont/anl)v>0 in equation (30) indicates 
two cases where (anl > 0, an t > 0) and (an1 < 0, an t < 0) and 
k has two values and four cases. Among these cases 
positive k=+(an t /an~)v>0 for (an1>0, ant>0) and 
negative k = - ( a n t / a n l ) , , < O  for (an l<0,  ant<0) are 
interesting physically. It is found in these calculations 
that the positive k corresponds to positive fluctuation or 
X ~ > (h t in Figure 3 and negative k to negative fluctuation. 
In the case of k > 0  and (an1 >0,  ant>0), the number of 
molecules of 1, ni, in the small region tends to increase 
and the concentration of 1, X 1, becomes higher than the 
mean value ~b 1 (positive fluctuation). If the process of k > 0 
occurs in the region continuously, then both the total 
number of molecules/I t and nl are greater than the mean 
nmea, and nmea,~bl, respectively. Further introduction of 
molecules of 1 into the region follows a decrease of n t 
and nl because the region is unstable thermodynamically. 
This process corresponds to k = - ( a n t / a n l ) , , < O  and 
(an l <0,  an t<0 ) and leads to a negative concentration 
fluctuation. It is true that the positive and negative 
concentration fluctuations in various regions in solution 
occur under a condition where the mass conservation 
rule is held. In other words, an occurrence of positive 
fluctuation in some region is responsible for negative 
fluctuation at another near region and the average 
of fluctuation around the mean concentration over the 
entire solution must be zero. In this work the values 
of k are distributed over the solution in the range of 
negative k to positive k and the value of k averaged over 
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Table 1 Values of k in simple liquid and polymer solutions calculated using equations (24) and (25) based on the experimental data list in ref. 12 

No. 
M2 M 1 v ° k+" (point on 

Solute (2) (g m o l -  1) Solvent (1) (g mo l -  1) (cm 3 g- 1) v2/v° ol n (x 1 = 0.5) Figure 1) 

C2H 6 30.07 C2H 4 28.054 1.7279 1.0113 4.91 -0 .0019 1 

C6H 6 78.114 CS 2 76.131 0.7962 1.438 1.84 0.0426 2 

n-C7H16 100.205 C6H 6 78.114 1.1445 1.2862 2.38 0.0229 3 

n-C16H34 226.448 C6H6 78.114 1.1445 1.1351 5.31 0.0111 4 

Cyclo-CsH16 112.216 C6H 6 78.114 1.1445 1.0515 3.59 -0 .0013 6 

p-xylene 106.168 C6H6 78.114 1.1445 1.020 3.22 --0.0004 7 

n-Ca4H3o 198.394 C6F 6 186.056 0.6228 2.1043 2.48 0.2089 8 

m-xylene 106.168 Aniline 93.129 0.9783 1.1829 1.67 0.0098 9 

n-C6H14 86.178 CS2 76.131 0.7962 1.917 2.38 0.1598 10 

n-C16H34 226.448 CC14 153.823 0.6312 2.049 3.29 0.2167 11 

Cyclo-CaH16 112.216 C1C6H 5 112.559 0.9083 1.1104 1.55 0.0034 12 

n-Cyril6 100.205 n-C6H14 86.178 1.5267 0.96423 1.45 -0 .00002 13 

n-C 11H24 156.313 n-C6H14 86.178 1.5267 0.8852 2.73 -0 .0030  14 

n-C 16H34 226.448 n 'C6H t 4 86.178 1.6074 0.8341 4.01 - 0.0094 15 

n-C9H20 128.259 n-CvH 16 100.205 1.4721 0.9461 1.71 - 0.0002 16 

n-C2oH42 282.556 n-C7H16 100.205 1.5619 0.8475 4.20 -0 .0120  17 

n-C36Hv4 506.99 n-C9H2o 128.259 1.5851 0.8395 5.41 -0 .0209 18 

C2H 4 28.054 CH 4 16.043 2.3053 0.6623 2.23 0.0188 19 

C3H 8 44.097 CH 4 16.043 2.3389 0.6024 3.81 0.0104 20 

Cyclo-C6H12 84.162 C(CH3)4 72.151 1.6358 0.7669 1.47 0.0138 21 

BrC6H 5 157.010 c 6 n  6 78.114 1.1578 0.5854 2.28 0.0249 22 

BrC6H 5 157.010 CH3C6H 5 92.141 1.1726 0.5780 1.79 0.0393 23 

HBr 80.912 HC1 36.461 0.8563 0.5095 2.38 0.03855 24 

1,2-C12C6H4 147.004 2,2,4TMP 114.232 1.4539 0.5289 0.906 0.0733 25 

1,3-CIzC6Ha 147.004 2,2,4TMP 114.232 1.4539 0.5362 0.83 0.0715 26 

CCI 4 153.823 C(CHa) 4 72.151 1.6358 0.3744 1.83 0.1077 27 

Kr 83.800 CH 4 16.043 2.4085 0.1700 3.37 0.1286 28 

O 2 31.999 N z 28.013 1.2359 0.6700 1.0 0.0325 29 

Ar 39.948 N z 28.013 1.2887 0.5477 1.27 0.0604 30 

Xe 131.300 Kr  83.800 0.4862 0.6983 2.34 0.0206 31 

CC14 153.823 CycloC6H12 84.162 1.292 0.4885 1.69 0.06509 32 

BrC6H 5 157.01 C1C6H 5 112.559 0.9155 0.7403 1.54 0.0138 33 

CH3I 141.939 CHCI 3 119.373 0.6759 0.6532 0.874 0.0370 34 

CH3I 141.939 c 6 n  6 78.114 1.1446 0.3857 1.286 0.1199 35 

C6H 6 78.114 C(CH3) 4 72.151 1.6359 0.6788 0.81 0.0321 36 

CC14 153.823 Diethyl ether 74.123 1.4124 0.4469 2.07 0.0719 37 

CHCI 3 119.378 Diethyl ether 74.123 1.4124 0.4786 1.45 0.0272 38 

C s H s N  79.102 C6H 6 78.114 1.1445 0.8982 1.14 0.00248 39 

CHCI 3 119.378 (C2Hs)3N 101.193 1.3545 0.4891 0.74 0.0922 40 

1,2C12C6H 4 147.004 n-CaHla 163.541 1.4317 0.6345 - 0 . 2 0  0.05517 41 

CH3I 141.939 CCI 4 153.823 0.6312 0.6995 0.20 0.03278 42 

C6H 6 78.114 n-C6H14 86.178 1.5267 0.7497 0.12 0.0241 43 

HC1 36.461 Xe 131.300 0.3669 2.343 - 1.06 0.4652 44 

C6H 6 78.114 CC14 153.823 0.6311 1.814 --0.10 0.1403 45 

CycloC 8H16 112.216 1,2C12C 6H4 147.004 0.7690 1.5628 0.964 0.0662 46 

CycloC 8 H a 6 112.216 1,3C1 zC6H 4 147.004 0.7795 1.5417 0.966 0.0621 47 

CH2CI 2 84.933 CC14 153.823 0.6312 1.2036 -0 .196  0.0141 48 

o-xylene 106.168 CCI 4 153.823 0.6312 1.8085 0.78 0.1260 49 

C s H s N  79.102 CHCI a 119.378 0.6864 1.520l 0.37 0.0565 50 

PIB b 4.0 x 104 CycloC6H12 84.162 1.2921 0.844l 1.35 -0 .0011 

PIB b 4.0× 104 n-C6H14 86.178 1.5267 0.7143 1.80 -0 .0042 

PS b 5.1 × 104 M E K  72.107 1.2502 0.7468 1.76 -0 .0031 

PS b 5.1 × 104 C2H5C6I"I 5 106.168 1.1592 0.8054 1.49 -0 .0019 

PDMS b 105 C6H 6 78.114 1.1445 0.9011 1.25 -0 .0005 

PIB b 4.0 × l0 g C6H 6 78.114 1.1445 0.9529 0.25 0.0012 

NR b 4.0 × 10 ~" C6H 6 78.114 1.1445 0.9569 0.83 0.0002 

PDMS b 105 CIC6H 5 112.559 0.9415 1.0952 0.20 -0 .0024  

"k + = + { 1 + ( v ° / v ° x o . 2 / O n , ) v }  
b In the ease of polymer solutions k(~bl =0.5). The data are not  plotted in Fioure 1 to avoid confusion 
2,2,4TMP, 2,2,4-trimethylpentane; PIB, polyisobutylene; PS, polystyrene; PDMS, poly(dimet hylsiloxane); NR, natural rubber; MEK, methyl ethyl ketone 
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Figure 2 Local mole fraction of component 1, xl, versus mean mole 
fraction of 1, ~,1 in the simple liquid solution calculated using equation 
(5) with Nv/nt= 101° and various values of k: (O) k =0.01; (A) k =0.001; 
(0) k= -0.01 
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Figure 3 Local volume fraction of solvent 1, X 1 versus mean volume 
fraction of 1, ~bl, in polymer solutions calculated using equation (14) 
with r =  1000 segments per polymer and N*/n*= 101° and various 
values of k: (O) k=0.01; (/X) k=0.001; (0 )  k=  -0.01 

the solution must be zero from the condition that the mass 
conservation rule is held. 

It is very important to examine whether equation (1) 
can be applied to any type of solution, such as a non-ideal 
mixture with non-zero enthalpy of mixing AHM :~ 0. Since 
the cluster formation in solution comes from an 
asymmetry of molecular interaction between solvent- 
solvent and solute-solute and is related to AHM, the 
number of configurations in a non-ideal mixture can be 
estimated by taking into account the effect of cluster 
formation. The number of configurations in the non-ideal 
mixture is expressed by the equation: 

Wni(nl, n2) = { N  t!/(N1 - n l ) !n i ! }  {N2! / (N2 - n2)!n2!} 

x {(n 1 + n 2 -- c t -- c2)!/(n t -- c t)!(n2 -- c2)t} 

x {(N 1 + N 2 - n  1 - n 2 - d  1 - d 2 ) ! /  

(Nl - ni -- dl)!(N2 - n 2 -  d2)!} (32) 

where c I and c2 are the decrease in number due to the 
cluster formation of molecules 1 and 2, respectively, in 
the small region, while d 1 and d 2 are the decrease in 
number due to the clusters in the rest. It is important to 
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Plot ofX 1 versus In r in a simple liquid and polymer solution 
calculated using equation (14) at q51 =0.5, k=0.01 and N*/n* = 101° 
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point out that equation (32) is valid only while the clusters 
are stable. In general the clusters are not permanent, 
except for the products of a chemical reaction, and break 
up easily to their original molecules which can move as 
independently as in the ideal mixture. Therefore time- 
averaged values of c~ and dl over times much longer than 
the stable or living times of cluster are approximately 
zero for each molecule. A main difference between the 
non-ideal mixture and the ideal mixture with respect to 
the behaviour of molecular motion is a difference of the 
time from a collision of molecules to separation to 
individual molecules. The time in the non-ideal mixture 
is longer than that in the ideal mixture. Equation (32) 
may be applicable to a micelle solution where the micelles 
are stable in solution over a long time. The present work 
was based on the assumption that there is no significant 
difference in the number of configurations between an 
ideal mixture and a non-ideal mixture with a weak 
clustering tendency. 
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